Closing Wed: HW_7B, 7C (8.1)

8.1 Arc Length

Goal: Given $y=f(x)$ from $x=a$ to $x=b$.
Find the length along the curve.

Derivation:

1. Break into n subdivision:

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x
$$

2. Compute $y_{i}=f\left(x_{i}\right)$.
3. Compute the straight line distance from ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) to $\left(\mathrm{x}_{\mathrm{i}+1}, \mathrm{y}_{\mathrm{i}+1}\right)$.

$$
\begin{aligned}
& \sqrt{\left(x_{i+1}-x_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}} \\
&=\sqrt{(\Delta x)^{2}+\left(\Delta y_{i}\right)^{2}} \\
&=\sqrt{(\Delta x)^{2}\left(1+\frac{\left(\Delta y_{i}\right)^{2}}{(\Delta x)^{2}}\right)} \\
&=\sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x}\right)^{2}} \Delta x
\end{aligned}
$$

4. Add these distances up.

$$
\begin{aligned}
& \text { Arc Length }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x}\right)^{2}} \Delta x \\
& \text { Arc Length }=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

Examples:

1. Find the arc length of

$$
y=\ln (\sec (x))
$$

from $x=0$ to $x=\pi / 4$.
3. Find the arc length of

$$
y=\frac{x^{3}}{3}+\frac{1}{4 x}
$$

from $x=1$ to $x=2$.
4. Find the arc length of $y=4 x^{3 / 2}$ from $x=0$ to $x=3$.

Side Note: The Arc Length function In 2D and 3D motion problems, the arch length plays an important role. In those settings you have parametric equations for motion:

$$
x=x(u), y=y(u)
$$

and so

$$
\begin{aligned}
& \text { Length }=\int \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int \sqrt{1+\left(\frac{y^{\prime}(u)}{x^{\prime}(u)}\right)^{2}} x^{\prime}(u) d u \\
& =\int \sqrt{\left(x^{\prime}(u)\right)^{2}+\left(y^{\prime}(u)\right)^{2}} d u
\end{aligned}
$$

Thus, the distance traveled by the particle from time $u=0$ to $u=t$ is given by

$$
s(t)=\int_{0}^{t} \sqrt{\left(x^{\prime}(u)\right)^{2}+\left(y^{\prime}(u)\right)^{2}} d u
$$

This is called the arc length function.
A important note is that the speed of the object is:

$$
s^{\prime}(t)=\sqrt{\left(x^{\prime}(u)\right)^{2}+\left(y^{\prime}(u)\right)^{2}}
$$

Example:

1. $x(u)=3 u, y(u)=4 u$. Find the arc length function.
2. $\mathrm{x}(\mathrm{u})=\mathrm{u}, \mathrm{y}(\mathrm{u})=4 \mathrm{u}^{3 / 2}$

Find the arc length function.

